Sabtu, 30 Agustus 2014

Cara Menggunakan Multimeter Analog


Skala Mutimeter
Skala Multimeter
Cara menggunakan Multimeter
    1. Mengukur tegangan DC
      • Atur Selektor pada posisi DCV.
      • Pilih skala batas ukur berdasarkan perkiraan besar tegangan yang akan di cek, jika tegangan yang di cek sekitar 12Volt maka atur posisi skala di batas ukur 50V.
      • Untuk mengukur tegangan yang tidak diketahui besarnya maka atur batas ukur pada posisi tertinggi supaya multimeter tidak  rusak.
      • Hubungkan atau tempelkan probe multimeter ke titik tegangan yang akan dicek, probe warna merah pada posisi (+) dan probe  warna hitam pada titik (-) tidak boleh terbalik.
      • Baca hasil ukur pada multimeter.

  1. Mengukur tegangan AC
    • Atur Selektor pada posisi ACV.
    • Pilih skala batas ukur berdasarkan perkiraan besar tegangan yang akan di cek, jika tegangan yang di cek sekitar 12Volt maka atur posisi skala di batas ukur 50V.
    • Untuk mengukur tegangan yang tidak diketahui besarnya maka atur batas ukur pada posisi tertinggi supaya multimeter tidak rusak.
    • Hubungkan atau tempelkan probe multimeter ke titik tegangan yang akan dicek. Pemasangan probe multimeter boleh terbalik.
    • Baca hasil ukur pada multimeter.
  2. Mengukur kuat arus DC
    • Atur Selektor pada posisi DCA.
    • Pilih skala batas ukur berdasarkan perkiraan besar arus yang akan di cek, misal : arus yang di cek sekitar 100mA maka atur posisi skala di batas ukur 250mA atau 500mA.
    • Perhatikan dengan benar batas maksimal kuat arus yang mampu diukur oleh multimeter karena jika melebihi batas maka fuse (sekring) pada multimeter akan putus dan multimeter sementara tidak bisa dipakai dan fuse (sekring) harus diganti dulu.
    • Pemasangan probe multimeter tidak sama dengan saat  pengukuran tegangan DC dan AC, karena mengukur arus berarti  kita memutus salah satu hubungan catu daya ke beban yang akan dicek arusnya, lalu menjadikan multimeter sebagai penghubung.
    • Hubungkan probe multimeter merah pada output tegangan (+) catu daya dan probe (-) pada input tegangan (+) dari beban/rangkaian yang akan dicek pemakaian arusnya.
    • Baca hasil ukur pada multimeter.
  3. Mengukur nilai hambatan sebuah resistor tetap
    • Atur Selektor pada posisi Ohmmeter.
    • Pilih skala batas ukur berdasarkan nilai resistor yang akan diukur.
    • Batas ukur ohmmeter biasanya diawali dengan X (kali), artinya hasil penunjukkan jarum nantinya dikalikan dengan angka pengali sesuai batas ukur
    • Hubungkan kedua probe multimeter pada kedua ujung resistor boleh terbalik.
    • Baca hasil ukur pada multimeter, pastikan nilai penunjukan multimeter sama dengan nilai yang ditunjukkan oleh gelang warna resistor.
  4. Mengukur nilai hambatan sebuah resistor variabel (VR)
    • Atur Selektor pada posisi Ohmmeter.
    • Pilih skala batas ukur berdasarkan nilai variabel resistor (VR)yang akan diukur.
    • Batas ukur ohmmeter biasanya diawali dengan X (kali), artinya hasil penunjukkan jarum nantinya dikalikan dengan angka  pengali sesuai batas ukur.
    • Hubungkan kedua probe multimeter pada kedua ujung resistor boleh terbalik.
    • Sambil membaca hasil ukur pada multimeter, putar/geser posisi variabel resistor dan pastikan penunjukan jarum multimeter berubah sesuai dengan putaran VR.
  5. Mengecek hubung-singkat / koneksi
    • Atur Selektor pada posisi Ohmmeter.
    • Pilih skala batas ukur X 1 (kali satu).
    • Hubungkan kedua probe multimeter pada kedua ujung kabel/terminal yang akan dicek koneksinya.
    • Baca hasil ukur pada multimeter, semakin kecil nilai hambatan yang ditunjukkan maka semakin baik konektivitasnya.
    • Jika jarum multimeter tidak menunjuk kemungkinan kabel atau  terminal tersebut putus.
  6. Mengecek diode
    • Atur Selektor pada posisi Ohmmeter.
    • Pilih skala batas ukur X 1K (kali satu kilo = X 1000).
    • Hubungkan  probe multimeter (-) pada anoda dan probe (+) pada katoda.
    • Jika diode yang dicek berupa led maka batas ukur pada X1 dan saat dicek, led akan menyala.
    • Jika multimeter menunjuk ke angka tertentu (biasanya sekitar  5-20K) berarti dioda baik, jika tidak menunjuk berarti dioda  rusak putus.
    • Lepaskan kedua probe lalu hubungkan  probe multimeter (+) pada anoda dan probe (-) pada katoda.
    • Jika jarum multimeter tidak menunjuk (tidak bergerak) berarti  dioda baik, jika bergerak berarti dioda rusak bocor tembus  katoda-anoda.
  7. Mengecek transistor NPN
    • Atur Selektor pada posisi Ohmmeter.
    • Pilih skala batas ukur X 1K (kali satu kilo = X 1000).
    • Hubungkan  probe multimeter (-) pada basis dan probe (+) pada kolektor .
    • Jika multimeter menunjuk ke angka tertentu (biasanya sekitar 5-20K) berarti transistor baik, jika tidak menunjuk berarti  transistor rusak putus B-C.
    • Lepaskan kedua probe lalu hubungkan  probe multimeter (+)  pada basis dan probe (-) pada kolektor.
    • Jika jarum multimeter tidak menunjuk (tidak bergerak) berarti transistor baik, jika bergerak berarti transistor rusak bocor tembus B-C.
    • Hubungkan  probe multimeter (-) pada basis dan probe (+) pada emitor.
    • Jika multimeter menunjuk ke angka tertentu (biasanya sekitar  5-20K) berarti transistor baik, jika tidak menunjuk berarti  transistor rusak putus B-E.
    • Lepaskan kedua probe lalu hubungkan  probe multimeter (+) pada basis dan probe (-) pada emitor.
    • Jika jarum multimeter tidak menunjuk (tidak bergerak) berarti transistor baik, jika bergerak berarti transistor rusak bocor tembus B-E.
    • Hubungkan  probe multimeter (+) pada emitor dan probe (-) pada kolektor.
    • Jika jarum multimeter tidak menunjuk (tidak bergerak) berarti transistor baik, jika bergerak berarti transistor rusak bocor tembus C-E.
    • Note : pengecekan probe multimeter (-) pada emitor dan probe (+) padakolektor tidak diperlukan.
  8. Mengecek transistor PNP
    • Atur Selektor pada posisi Ohmmeter.
    • Pilih skala batas ukur X 1K (kali satu kilo = X 1000).
    • Hubungkan  probe multimeter (+) pada basis dan probe (-) pada kolektor.
    • Jika multimeter menunjuk ke angka tertentu (biasanya sekitar 5-20K) berarti transistor baik, jika tidak menunjuk berarti transistor rusak putus B-C.
    • Lepaskan kedua probe lalu hubungkan  probe multimeter (-) pada basis dan probe (+) pada kolektor.
    • Jika jarum multimeter tidak menunjuk (tidak bergerak) berarti transistor baik, jika bergerak berarti transistor rusak bocor tembus B-C.
    • Hubungkan  probe multimeter (+) pada basis dan probe (-) pada emitor.
    • Jika multimeter menunjuk ke angka tertentu (biasanya sekitar 5-20K) berarti transistor baik, jika tidak menunjuk berarti transistor rusak putus B-E.
    • Lepaskan kedua probe lalu hubungkan  probe multimeter (-) pada basis dan probe (+) pada emitor.
    • Jika jarum multimeter tidak menunjuk (tidak bergerak) berarti transistor baik, jika bergerak berarti transistor rusak bocor tembus B-E.
    • Hubungkan  probe multimeter (-) pada emitor dan probe (+) pada kolektor.
    • Jika jarum multimeter tidak menunjuk (tidak bergerak) berarti transistor baik, jika bergerak berarti transistor rusak bocor tembus C-E.
    • Note : pengecekan probe multimeter (+) pada emitor dan probe (-) pada kolektor tidak diperlukan.
  9. Mengecek Kapasitor Elektrolit (Elko)
    • Atur Selektor pada posisi Ohmmeter.
    • Pilih skala batas ukur X 1 untuk nilai elko diatas 1000uF, X 10 untuk untuk nilai elko diatas 100uF-1000uF, X 100 untuk nilai elko 10uF-100uF dan X 1K untuk nilai elko dibawah 10uF.
    • Hubungkan  probe multimeter (-) pada kaki (+) elko dan probe (+) pada kaki (-) elko.
    • Pastikan jarum multimeter bergerak kekanan sampai nilai tertentu (tergantung nilai elko) lalu kembali ke posisi semula.
    • Jika jarum bergerak dan tidak kembali maka dipastikan elko bocor.
    • Jika jarum tidak bergerak maka elko kering / tidak menghantar.

Cara Menggunakan Multitester Digital


Tips dan Trik Cara Menggunakan Multitester Digital yang saya share kali ini saya dapatkan dari salah satu forum yang saya ikuti, dan pemilik original post artikel ini adalah B_ry atau Hawkins. Mudah-mudahan bisa membantu kalian semua untuk mempermudah dalam penggunaan Multitester Digital.





Menggunakan Multitester Digital sebagai Volt Meter
1. Pasang Kabel hitam ke COM (Ground), dan pasang Kabel Merah ke Lubang paling kanan (V/Ohm).
2. Tentukan object pengukuran, misalnya akan mengukur battere Nokia yang berkapasitas 3,7V.
3. Lihat skala pada Multitester pada bagian V (Volt) ada dua yaitu:
DC Volt -- (Tegangan searah): Tegangan Batere, Tegangan Output IC Power, dsb (Terdapat Polaritas + dan -).
AC Volt ~ (Tegangan Bolak Balik): Tegangan PLN, dan sejenisnya.

Umumnya yang digunakan dalam pengukuran arus lemah seperti pengukuran ponsel, dll dipilih yang DC Volt --.

Setelah dipilih skala DC Volt, ada nilai-nilai yang tertera pada bagian DC Volt tersebut. Contoh adalah sebagai berikut:

- 200mV artinya akan mengukur tegangan yang maximal 0,2 Volt
- 2V artinya akan mengukur tegangan yang maximal 2 Volt
- 20V artinya akan mengukur tegangan yang maximal 20 Volt
- 200V artinya akan mengukur tegangan yang maximal 200V
- 750V artinya akan mengukur tegangan yang maximal 750V

Gunakan skala yang tepat untuk pengukuran, misalnya Battere 3,6 Volt gunakan skala pada 20V. Maka hasilnya akan akurat misalnya terbaca: 3,76 Volt.

Jika menggunakan skala 2 V akan muncul angka 1 (pertanda overload atau melebihi skala).
Jika menggunakan skala 200V akan terbaca hasilnya namun tidak akurat misalnya terbaca: 3,6V atau 3,7 V saja (1 digit belakang koma).
Jika menggunakan 750V bisa saja namun hasilnya kaan terbaca 3 atau 4 volt (Dibulatkan langsung tanpa koma).

Setelah object pengukuran sudah ada, dan skala sudah dipilih yang tepat, maka lakukan pengukuran dengan menempelkan kabel merah ke positif battere dan kabel hitam ke negatif batere. Akan muncul hasil pengukurannya.

Jika kabel terbalik hasilnya akan tetap muncul, namun ada tanda negatif didepan hasilnya. Beda dgn Multitester Analog. Jika kabel terbalik jarum akan mentok kekiri.

NB : jika Multitester ada tombol DH, artinya Data Hold. Jika ditekan maka hasilnya akan freeze, dan bisa dicatat hasilnya.

Menggunakan Multitester Digital sebagai Volt Meter
1. Perhatikan Object yang akan diukur (Resistor, hambatan jalur, dll).
2. Perhatikan skala Pengukuran pada Ohm Meter.
200 artinya akan mengukur hambatan yang nilainya max. 200 Ohm.
2K artinya akan mengukur hambatan yang nilainya max. 2000 Ohm (2K Ohm).
20 K artinya akan mengukur hambatan yang nilainya max. 20.000 Ohm (20K Ohm).
200K artinya akan mengukur hambatan yang nilainya max. 200.000 Ohm (200K Ohm).
2M artinya akan menguur hambatan yang nilainya 2.000.000 Ohm (2000K Ohm atau 2 Mega Ohm).

Bila tidak tahu besaran nilai yang mau diukur, dianjurkan pilih skala tengah misalnya skala 20K, lalu lakukan pengukuran.
- Jika hasilnya 1 (Overload) maka naikkan skala.
- Jika hasilnya digit dibelakang koma kurang akurat, maka turunkan skala.

Contoh pembacaan hasil:
Pada skala 2K hasilnya 1,76 itu artinya hambatan yang terukur adalah 1,76 K Ohm.
Pada skala 2K hasilnya 0,378 itu artinya hambatan yang terukur adalah 0,378 K Ohm alias 378 Ohm. (KOhm ke Ohm dikali 1000).
Pada skala 20K hasilnya 1, artinya object yang mau diukur melebihi skala 20K, maka naikan skala menjadi 200K, hasilnya menjadi 38,78 itu artinya hambatan yang terukur adalah sebesar 38,78 KOhm.

Pada pengukuran tegangan PLN, maka skala dipindahkan ke bagian AC Volt (~) lalu skala ke 750 V.

Colok kabel merah dan hitam ke masing-masing lubang stop kontak (bolak balik boleh). Namun hati-hati takut ada kabel yang terkelupas, bisa tersengat listrik.
Hasil yang akan muncul misalnya: 216 artinya tegangan PLN tersebut sebesar 216 Volt.

Jika memakai skala 200, maka hasilnya akan 1 pertanda over load alias melebihi skala 200 Volt tersebut.

Menggunakan Multitester Digital sebagai pengukur kapasitas Condensator
Kondensator (Capasitor) adalah suatu alat yang dapat menyimpan energi di dalam medan listrik, dengan cara mengumpulkan ketidakseimbangan internal dari muatan listrik. Kondensator memiliki satuan yang disebut Farad. Ditemukan oleh Michael Faraday (1791-1867). Kondensator kini juga dikenal sebagai "kapasitor", namun kata "kondensator" masih dipakai hingga saat ini. Pertama disebut oleh Alessandro Volta seorang ilmuwan Italia pada tahun 1782 (dari bahasa Itali condensatore), berkenaan dengan kemampuan alat untuk menyimpan suatu muatan listrik yang tinggi dibanding komponen lainnya. Kebanyakan bahasa dan negara yang tidak menggunakan bahasa Inggris masih mengacu pada perkataan bahasa Italia "condensatore", seperti bahasa Perancis condensateur, Indonesia dan Jerman Kondensator atau Spanyol Condensador.

* Kondensator diidentikkan mempunyai dua kaki dan dua kutub yaitu positif dan negatif serta memiliki cairan elektrolit dan biasanya berbentuk tabung.

Lambang kondensator (mempunyai kutub positif dan negatif) pada skema elektronika.

* Sedangkan jenis yang satunya lagi kebanyakan nilai kapasitasnya lebih rendah, tidak mempunyai kutub positif atau negatif pada kakinya, kebanyakan berbentuk bulat pipih berwarna coklat, merah, hijau dan lainnya seperti tablet atau kancing baju yang sering disebut kapasitor (capacitor).

Lambang kapasitor (tidak mempunyai kutub) pada skema elektronika. Namun kebiasaan dan kondisi serta artikulasi bahasa setiap negara tergantung pada masyarakat yang lebih sering menyebutkannya. Kini kebiasaan orang tersebut hanya menyebutkan salah satu nama yang paling dominan digunakan atau lebih sering didengar. Pada masa kini, kondensator sering disebut kapasitor (capacitor) ataupun sebaliknya yang pada ilmu elektronika disingkat dengan huruf (C).

Satuan dalam kondensator disebut Farad. Satu Farad = 9 x 1011 cm² yang artinya luas permukaan kepingan tersebut menjadi 1 Farad sama dengan 106 mikroFarad (µF), jadi 1 µF = 9 x 105 cm².

Satuan-satuan sentimeter persegi (cm²) jarang sekali digunakan karena kurang praktis, satuan yang banyak digunakan adalah:

* 1 Farad = 1.000.000 µF (mikro Farad)
* 1 µF = 1.000.000 pF (piko Farad)
* 1 µF = 1.000 nF (nano Farad)
* 1 nF = 1.000 pF (piko Farad)
* 1 pF = 1.000 µµF (mikro-mikro Farad)

Langkah pengukurannya:
1. Pilih Skala bagian F dan pilih skala yang sesuai.
2. Maka nilai yang tampil adalah nilai kapasitas kondensator tersebut dengan satuan Farad atau Mikro Farad (10 pangkat -6) atau Nano Farad (10 pangkat -9) atau Piko Farad (10 pangkat -12) Farad.

Menggunakan Multitester Digital sebagai Pengukur Jalur (Kontinuitas)
1. Pilih Skala Buzzer, yang ada icon Sound atau ada LED nya. Jika kabel tester Merah dan hitam ditempelkan langsung, maka Multitester akan berbunyi pertanda jalur OK. Tanpa hambatan (<50 Ohm). 2. Pilih object pengukuran. Misal akan mengukur jalur Power ON dari IC UEM kaki P7 ke Switch On off. Tempel salah satu kabel (bebas yang mana saja) ke kaki Switch ON Off, satu lagi ke kaki IC UEM P7 atau capasitor terdekatnya. Jika bunyi maka pertanda jalur bagus dan terhubung. Jika tidak bunyi, coba apakah sudah benar letak pengukurannya. Jika sudah, dipastikan jalur putus dan harus di jumper.



Menggunakan Multitester Digital sebagai pengukur arus rangkaian
Pindahkan kabel merah ke 20A. Dan kabel hitam tetap di COM (ground). Dipilih lubang 20A karena akan mengukur arus yang lebih dari 0,2 A.

Misalnya akan mengukur arus pengisian battere. Salah satu cara antara lain salah satu kabel charger dipotong. Dan masing-masing kabel ditempelkan ke kabel merah dan kabel hitam Multitester. Lakukan pengukuran saat ponsel di charger. Misalnya nilai yang tertera 0,725 berarti arus pengisian sebesar 0,725 A alais 725 mA.

Atau mencabut Sekring (Fuse) lalu tempelkan masing-masing kabel ke masing-masing kutub sekring pada PCB. Lalu ukur hasilnya.

Cara Mengukur Batere Lithium Original atau Palsu.

1. Kabel Merah tetap di 20A, kabel hitam di GND.
2. Skala tetap di 20A
3. Tempel kabel Merah di positiv (+) batere
4. Tempel kbl hitam di negativ (-) batere
5. lihat hasil yang muncul :

Jika secara refleks, menunjuk ke angka tertentu dan kembali ke Nol, pertanda Batere Lithium asli. Tapi jika hasilnya menunjuk ke angka tertentu, dan stabil. Pertanda Batere Lithium palsu, dan cepat-cepat cabut kabel dari Batere. Karena Batere akan menjadi panas.. karena didalamya tidak ada rangkaian IC Pengontrolnya.

Untuk Batere lithium asli, walaupun kabel ditempel terus ke batere, tidak akan ada masalah.

Makanya sering terjadi ponsel dalam keadaan panas atau bahkan meledak saat dicharging. Karena menggunakan Batere Lithium palsu yang tidak ada rangkaian IC pengontrolnya. Sehingga saat batere penuh, sensor BTEMP tidak bekerja. Maka batere yang telah penuh tersebut akan terus terisi sehingga menjadi panas dan akhirnya dapat mengakibatkan kerusakan pada ponsel, atau bahkan bisa saja batere menjadi kembung dan dapat meledak.

Oleh karen itu gunakan selalu batere Lithium yang asli yang mengandung IC Pengontrol short Circuit didalamnya.

Sumber : http://dwicell57.blogspot.com/2011/03/tips-dan-trik-cara-menggunakan.html

Jumat, 29 Agustus 2014

Mengatasi Udara Dalam Selang Infus Canon

Tips ini saya buat berdasarkan pengalaman pribadi saya waktu pertama kali menggunakan printer yang menggunakan system infus. Ketika itu saya benar-benar bingung mengatasi tinta infus yang masuk angin. Sampai-sampai tangan blepotan semua terkena tinta tapi tetap aja tu angin g bias ilang. Akhirnya saya sempat lihat petugas rental printer yang sedang membentulkan tinta masuk angin. Sesampainya dirumah dengan penuh BONEK (bondo nekad,hehehe) saya mencoba dan alhamdulillah tinta saya bisa teratasi. Berikut langkah-langkahnya :

Alat & Bahan :
- Tinta (sesuai kebutuhan)
- Suntikan 2 buah
- Tissue

Langkah - langkah :
1. Lepas catridge dari printer.
2. Pilih selang warna apa yang ingin diperbaiki ato sedang masuk angin.
3. Kemudian lepas ujung selang yang menancap pada ctridge dan buka karet penutup udara pada botol infus anda.
4. Sedot udara menggunakan suntikan sampai tinta memenuhi selang kemudian karet penutup udara di tutup biar udara g masuk lagi.
5. Isi catridge menggunakan suntikan sampai penuh (yg dilepas selangnya), hentikan pengisian sesat tinta mau meluber.
6. Pasang ujung selang ke catridge dan selesai, tinta printer infus anda sudah normal kembali.

Tahap selanjutnya lakukan deep cleaning 1-2 kali. Kalau masih terjadi masuk angin ulangi langkah-langkah di atas, Agar berhasil memang mmbutuhkan keberanian dan ketelitian. Selamat mencoba...

Sumber : http://kak-bilriz.blogspot.com/2013/01/cara-memperbaiki-tinta-infus-di-selang.html

Cara Memperbaiki Catridge Yang Warnanya Tercampur

Dalam mengisi tinta printer dengan cara disuntik, entah karena lupa atau buru-buru kita salah dalam mengisi tinta sesuai warnanya misalnya warna magenta di isi dengan tinta warna cyan. Hal ini sering terjadi pada printer yang menggabungkan cartridge warna (magenta,cyan,yellow) dalam satu cartridge.

Apabila sudah terlanjur salah isi tinta, maka berikut ini saya akan berbagi pengalaman memperbaiki cartridge yang warnanya tercampur dalam hal ini saya menggunakan printer Canon ip2770 dengan cartridge warna PG-811, untuk printer merk lain asal cartridge-nya sejenis dengan cartridge 811, maka kemungkinan juga bisa. Ada 2 cara yang bisa sobat coba berikut ini: 

Cara Pertama, siapkan alat - alat :

• Suntikan kosong ( yang masih baru/lama tapi bersih dari tinta ).

• Tissue 

Berikut langkah-langkahnya:

  1. Ambil suntikan yang kosong lalu masukkan jarum ke dalam lubang tinta catridge yang tercampur.

  2. Sedot tinta dari dalam cartridge yang warnanya tercampur sampai tinta tidak keluar.

  3. Lalu berikan tissue ke ujung head catridge tinta hal ini berguna untuk menguras / menyedot sisa tinta dari bawah.

  4. Kemudian isi kembali dengan warna asal yang asli tata letaknya dalam lubang catrige sidikit demi sedikit.

  5. Lakukan pengecekan dengan mencetak gambar (usahakan gambar tersebut dominan dari warna yang tercampur, misalnya warna magenta yang tercampur maka cari gambar yang dominan warna magenta), jika warna cartridge masih tercampur ulangi lagi langkah no. 1 sampai 4.

Cara Kedua, siapkan alat - alat :

• Obeng min atau pisau cutter.

• Tissue 

Berikut langkah-langkahnya:

  1. Congkel/buka penutup cartridge dengan obeng atau cutter sehingga akan terlihat busa catridge.

  2. Ambil busa dari dalam cartridge dan bersihkan busa dengan menggunakan air. Agar hasil maksimal, bersihkan dengan air panas.

  3. Setelah semua sudah bersih keringkan busa catridge.

  4. Kemudian setelah busa kering masukan kembali busa pada tempat semula.

  5. Sebelum menutup catrid isi dulu tinta setelah itu tutup catridge dan rekatkan tutup dengan menggunakan solatip / lakban / isolasi. Jangan gunakan lem pengeras, karena apabila akan membukanya lagi jadi susah, dan malah tidak rapat dengan tempat cartridge.

Perhatian: Dalam melakukan 2 cara diatas, pada bagian chip cartridge (kotak-kotak kecil pada bagian depan cartridge) jangan sampai tersentuh tangan atau terkena tinta.

Demikian semoga cara-cara diatas dapat membantu memperbaiki cartridge printer sobat yang tanpa sengaja tercampur warnanya. 

www.tadungkung.com

Cara Setting Karburator Motor

Cara Setting Karburator Motor
Tugas utama karburator adalah mencampur Bahan Bakar (BB) + Udara (O2). Kira-kira dengan perbandingan range nya BB : O2 adl 1 : 13-15. Pokoknya gmn caranya biar mesin dapet suplai campuran segitu.

Kenapa pake range, padahal teori di buku2 pembakaran ideal itu 1:14?

Jwbannya adl Karena kondisi mesin & linkungan mempengaruhi settingan campuran BB:O2.


Misal:

Kompresi makin tinggi BERARTI mesin makin panas BERARTI butuh suplai BB lebih banyak biar mesin gak jebol.
Humidity (kelembaban) lingkungan makin tinggi BERARTI campuran BB terkontaminasi air, BERARTI campuran makin miskin, BERARTI bensin hrs lebih banyak.
Suhu lingkungan rendah BERARTI suhu kerja mesin turun BERARTI bensin harus dikurangi agar suhu kerja mesin jadi ideal.
Knalpot bobokan (Free flow) BERARTI rpm makin tinggi BERARTI suhu mesin meningkat BERARTI butuh BB makin tinggi.
Dan masih banyak lagi parameter yg harus diperhatiin termasuk desain lubang masuk pada blok yg b’pengaruh dg settingan spuyer sebagai penyalur BB.
Itu teori dasarnya.

Setting Karbu:

Karbu pny 2 spuyer :

Satu buah main jet (tuk NSR std ukurannya 130) yg berperan meyalurkan BB saat bukaan gas sekitar setengah putaran keatas
Satu buah pilot jet (NSR std ukurannya 45) yg berperan menyalurkan BB dari putaran gas 0 derajat sampe penuh, cm efek dari pilot jet ini bisa dikatakan tidak terlalu signifikan pada bukaan gas penuh N rpm mesin yg sudah tinggi.
Hal lain yg berpengaruh dengan setingan termasuk :

Ukuran Venturi karbu
Jarum skep
Stelan angin
Power jet.
Venturi karbu makin besar maka makin banyak udara yg lewat shg butuh spuyer lebih besar baik pilot atau main jetnya spy campuran bisa pas.

Trus kapan kita membesarkan ato mengecilkan spuyer2 tadi?

Sebelumnya hrs tahu dulu gejala2 mesin saat kekurangan BB dan kebanyakan BB:

1. “Ngempos” adalah gejala mesin spt kehilangan tenaga yg disebabkan kekurangan BB

2. “Mberebet” adl gejala mesin yg sebenernya dirasa padat cm tenaga seperti tertahan dan kadang dibarengi dengan suara benturan logam kalo settingannya terlalu basah.

Berarti kl NGEMPOS mesin butuh BB, kl BREBET mesin kebanyakan BB.

Kasus-Kasus

Nah berikut kasus2 yg sering terjadi krn masalah pilot jet :

Motor kl pagi susah hidup krn begitu gas dibuka ngempos terus mati ya berarti naekin pilot jet.
Motor dah jalan tapi sering tiba2 kehilangan tenaga saat putaran gas N putaran rendah berarti naekin pilot jet
Motor sering over heat saat jalan pelan berarti minta naek pilot jet
Motor brebet di putaran bawah tapi enak di put atas berarti pilot jet kebesaran.
Motor gak pake di cuk kl pagi N bisa langsung start
(ini jg gak normal) berarti pilot hrs turun.

Kesimpulannya, kl ada gejala ngempos,suhu tinggi diputaran yg relatif rendah maka minta naek pilot jet, N kl ada gejala brebet di put rendah jg maka pilot hrs turun.

Trus tuk kasus2 mainjet:

Mtr dibawa kebut2an sampe putaran atas trus begitu finish jalan pelan2 jadi ngempos dibarengi asep ngebul BERARTI suhu saat putaran tinggi meningkat drastis BERARTI main jet minta naik
Nafas motor di putaran atas terlalu panjang berarti mainjet minta naik.
Mtr ngelitik padahal yg lain normal BERARTI suhu mesin SANGAT TINGGI saat putaran atas BERARTI main jet minta naik.
Motor Brebet di put atas saja berarti main jet minta turun
dll
Kesimpulannya, jika mtr Brebet di put atas berarti main jet hrs turun, jika mtr suhunya tinggi di putaran atas berarti main jet minta naik.

Note:

Setiap ada perubahan ukuran spuyer wajib setting angin
Jangan berpatokan pada indikator suhu di dashboard tuk panduan setting krn pasti gak sesuai, ini butuh joki yg feelingnya dah kuat.
Adakalanya detonasi tdk bisa diobati dengan naekin spuyer jika detonasinya sudah parah. Ini berarti ada ketidaknormalan pada komponen mesin lainnya.

Sumber : By Adi_NSRClub